

	
		
			
								
					
						KHKonsulting LLC
					
				

				PDF Acrobatics Without a Net

							

			
			 				Skip to content

									Home
	Development
	Training
	Consulting
	Blog
	About

			

		

	

	

		
			

			

				
					← Security Envelope Templates (Still) Missing in Mac Version

					How to Open a Document Attached to a PDF File →

				

				
					Apply Standard PDF Form FIeld Formatting/Keystroke/Validation Events to Fields via JavaScript

					
						Posted on September 13, 2015 by Karl Heinz Kremer					

					
						For some options in Acrobat’s form editor, you can select multiple fields and then apply the same option to all selected fields. This works for example for the “read-only” flag, or the display options. It does however not work for things like formatting/keystroke/validation/calculation scripts.

It’s relatively easy to assign e.g. a custom validation script to many form fields in a PDF form via JavaScript. I do that all the time to cut down on manually editing fields. The following script validates that a text field contains data in a specific format:

Let’s assume we want to use the following script for all fields that contain a product number in a specific format, three upper case characters followed by a dash and three or four digits:

var re = /^[A-Z]{3}-[0-9]{3,4}$/;

if (event.value != "") {
 event.rc = re.test(event.value);
}

To assign this to all fields that have a name that starts with “product.” (e.g. product.124, product.999 and so on), we can use the following script:

var script = "var re = /^[A-Z]{3}-[0-9]{3,4}$/;\n" +
	"if (event.value != \"\") {\n" +
	"\tevent.rc = re.test(event.value);\n" +
	"}";

for (var i=0; i<this.numFields; i++) {
 var fName = this.getNthFieldName(i);
 if (fName.indexOf("product.") == 0) {
 this.getField(fName).setAction("Validate", script);
	}
}

That’s straight forward, the only potential problem is that the script needs to be formatted so that it is a valid JavaScript string (e.g. by escaping all quotes and some other special characters, replacing line breaks with ‘\n’ and so on). But, what if we want to use not a custom validation script, but one of the built-in formatting functions or range validations that Acrobat supports. Take a look at this one:

This is a standard numeric format option for a value with two decimal places. How can we apply that to a number of fields in one operation? Yes, we can reimplement this in JavaScript, but what if I don’t want to go through the trouble of doing that, especially because Acrobat already knows how to do that?

The good news is that behind the scenes, even these built-in functions are handled via JavaScript. We just never see the actual script because Acrobat actually parses the scripts, and if it recognizes one of the built-in functions, it does not display the custom script dialog, it just says “that’s a number with two decimals”…

So, how do we find the script that Acrobat applies in the background? More good news: The tool to do that is built right into Acrobat Pro as well (unfortunately, not into Acrobat Standard): It’s the pre-flight tool.

Let’s create a quick sample document, add one form field, and apply the formatting routine from the screenshot above. Now bring up Preflight (e.g. Tools>Print Production>Preflight in Acrobat XI and DC) and select the menu item “Browse Internal PDF Structure…” in the “Options” menu:

This will show us the “guts” of the PDF file. For the following, we need to know that form fields are stored in the “Annoys” dictionary on the page level. The following screen shot shows the structure of the PDF file with the relevant dictionaries expanded:

We are looking for the “Page>Annots>N>AA” dictionary entry with “N” being the annotation number. In this case – because we only have one form field in our document, this is straight forward: We are using the annotation #0. In the “AA” dictionary, we see a number of different entries. If we are dealing with a formatting command, we usually see two items: The actual format script and a keystroke script.

The “AA” dictionary entry is describes in table 220 in the PDF specification (ISO 32000-2008), which points to table 194 for an explanation of the different trigger events. For the following, we will only consider the formatting, keystroke, validation and calculation triggers. They are defined (in this order) by the keys “F”, “K”, “V” and “C”.

In this case, we see two entries for “F” and “K”. Both have to dictionary entries on their own: “S” and “JS”. The “S” key indicates what type of action is saved in this dictionary. In our case, “JavaScript” indicates that we have indeed a script, and the “JS” key contains the actual script.

We find these two scripts: The formatting script looks like this:

AFNumber_Format(2, 0, 0, 0, "", true);

And the keystroke script is this:

AFNumber_Keystroke(2, 0, 0, 0, "", true);

Both scripts call an internal function. We could now play around with the options on the formatting dialog to figure out what the different parameters mean. This old page on Planet PDF has some additional information: http://www.planetpdf.com/forumarchive/125041.asp

For what we want to do, it’s sufficient to know what the scripts actually are, without fully understanding what exactly they do: If it’s good enough for Acrobat, it’s good enough for me 🙂

– if you do that, just make sure that you do not modify anything in these scripts.

To assign these two scripts to the Format and Keystroke triggers, we can use the following few lines of code:

var f = this.getField("SomeField");
f.setAction("Format", "AFNumber_Format(2, 0, 0, 0, \"\", true);");
f.setAction("Keystroke", "AFNumber_Keystroke(2, 0, 0, 0, \"\", true);");

You can of course combine this with a look that looks for certain fields, matching a certain pattern and then apply this change only to those fields. This can be done in e.g. an Action, or a Custom Command (see my previous post about Custom Commands for more information).

We have not discussed the validation and calculation scripts that Acrobat might add. The process is the same, all we need to do is either look for the “V” key for a validation script, or the “C” key for a calculation script (e.g. a simple field notation script or one of the simple calculation methods).

This is a very simple way to automate something that otherwise requires quite a bit of clicking and pasting of information.

											

					
						This entry was posted in Acrobat, JavaScript, PDF, Tutorial and tagged Adobe Acrobat, calculation, formatting, JavaScript, keystroke, PDF Form, scripts, validation. Bookmark the permalink.											

				

				
					← Security Envelope Templates (Still) Missing in Mac Version

					How to Open a Document Attached to a PDF File →

				

				
			

			One Response to Apply Standard PDF Form FIeld Formatting/Keystroke/Validation Events to Fields via JavaScript

				
		
			
								Ed says:			

			
			
				March 11, 2017 at 7:33 pm			

			This is awesome! Thank you! I have spent couple of hours looking for this information and you have written this so beautifully.

			
							

		

	

	

	
		Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment
Name *

Email *

Website

	

	

			

		

		
				Tip Jar
			If the information you found on my site helped you to solve a problem, please consider to hire me for your next PDF related project. If you just want to say “Thank You” for the tips and tricks I provided, you can leave a tip via PayPal (starting at $1):

		
			Recent Blog Posts
			
					EAN/UPC Barcodes in PDF Forms
									
	
					Page Splitter – For The 3rd Time – Splitting Tri-Fold Brochures
									
	
					The PDF Time Machine
									
	
					Connect to Database from PDF Form – This Time Without SOAP
									
	
					Remove Content from PDF Files Using Acrobat’s Preflight
									

		
	Blog Archive
		Blog Archive
		Select Month
 June 2023 (1)
 May 2018 (1)
 October 2017 (1)
 August 2017 (1)
 March 2017 (3)
 February 2017 (2)
 January 2017 (2)
 November 2016 (1)
 October 2016 (1)
 June 2016 (1)
 May 2016 (1)
 February 2016 (1)
 November 2015 (1)
 October 2015 (4)
 September 2015 (2)
 August 2015 (1)
 April 2015 (3)
 February 2015 (1)
 October 2014 (3)
 August 2014 (1)
 July 2014 (2)
 June 2014 (1)
 April 2014 (2)
 March 2014 (2)
 January 2014 (4)
 October 2013 (1)
 July 2013 (2)
 June 2013 (1)
 May 2013 (3)
 March 2013 (3)
 February 2013 (1)
 January 2013 (4)
 November 2012 (1)
 April 2011 (1)
 December 2010 (1)
 October 2010 (1)
 September 2010 (1)
 August 2010 (1)
 April 2010 (1)
 March 2010 (2)
 February 2010 (1)
 October 2009 (1)
 June 2009 (2)
 May 2009 (1)
 April 2009 (2)
 March 2009 (8)
 September 2008 (1)
 July 2008 (1)
 July 2007 (1)
 May 2007 (2)

		
				

		
				

		
				

		
	Contact
			KHKonsulting LLC

khkonsulting@khk.net

		

		

	

	
		

			
				
					KHKonsulting LLC				
			

			
								Proudly powered by WordPress.
			

		

	

	
	
	

	

	
	

